Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Math Biosci ; 360: 108957, 2023 06.
Article in English | MEDLINE | ID: covidwho-2244676

ABSTRACT

We analyse and mutually compare time series of covid-19-related data and mobility data across Belgium's 43 arrondissements (NUTS 3). In this way, we reach three conclusions. First, we could detect a decrease in mobility during high-incidence stages of the pandemic. This is expressed as a sizeable change in the average amount of time spent outside one's home arrondissement, investigated over five distinct periods, and in more detail using an inter-arrondissement "connectivity index" (CI). Second, we analyse spatio-temporal covid-19-related hospitalisation time series, after smoothing them using a generalise additive mixed model (GAMM). We confirm that some arrondissements are ahead of others and morphologically dissimilar to others, in terms of epidemiological progression. The tools used to quantify this are time-lagged cross-correlation (TLCC) and dynamic time warping (DTW), respectively. Third, we demonstrate that an arrondissement's CI with one of the three identified first-outbreak arrondissements is correlated to a substantial local excess mortality some five to six weeks after the first outbreak. More generally, we couple results leading to the first and second conclusion, in order to demonstrate an overall correlation between CI values on the one hand, and TLCC and DTW values on the other. We conclude that there is a strong correlation between physical movement of people and viral spread in the early stage of the sars-cov-2 epidemic in Belgium, though its strength weakens as the virus spreads.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Belgium/epidemiology , Pandemics , Disease Outbreaks
2.
Epidemics ; 37: 100505, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446617

ABSTRACT

We present a compartmental extended SEIQRD metapopulation model for SARS-CoV-2 spread in Belgium. We demonstrate the robustness of the calibration procedure by calibrating the model using incrementally larger datasets and dissect the model results by computing the effective reproduction number at home, in workplaces, in schools, and during leisure activities. We find that schools and home contacts are important transmission pathways for SARS-CoV-2 under lockdown measures. School reopening has the potential to increase the effective reproduction number from Re=0.66±0.04 (95 % CI) to Re=1.09±0.05 (95 % CI) under lockdown measures. The model accounts for the main characteristics of SARS-CoV-2 transmission and COVID-19 disease and features a detailed representation of hospitals with parameters derived from a dataset consisting of 22 136 hospitalized patients. Social contact during the pandemic is modeled by scaling pre-pandemic contact matrices with Google Community Mobility data and with effectivity-of-contact parameters inferred from hospitalization data. The calibrated social contact model with its publically available mobility data, although coarse-grained, is a cheap and readily available alternative to social-epidemiological contact studies under lockdown measures, which were not available at the start of the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , Communicable Disease Control , Humans , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL